Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(4): 369, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489113

RESUMO

Protected areas are typically managed as a network of sites exposed to varying anthropogenic conditions. Managing these networks benefits from monitoring of conditions across sites to help prioritize coordinated efforts. Monitoring marine vessel activity and related underwater radiated noise impacts across a network of protected areas, like the U.S. National Marine Sanctuary system, helps managers ensure the quality of habitats used by a wide range of marine species. Here, we use underwater acoustic detections of vessels to quantify different characteristics of vessel noise at 25 locations within eight marine sanctuaries including the Hawaiian Archipelago and the U.S. east and west coasts. Vessel noise metrics, including temporal presence and sound levels, were paired with Automatic Identification System (AIS) vessel tracking data to derive a suite of robust vessel noise indicators for use across the network of marine protected areas. Network-wide comparisons revealed a spectrum of vessel noise conditions that closely matched AIS vessel traffic composition. Shifts in vessel noise were correlated with the decrease in vessel activity early in the COVID-19 pandemic, and vessel speed reduction management initiatives. Improving our understanding of vessel noise conditions in these protected areas can help direct opportunities for reducing vessel noise, such as establishing and maintaining noise-free periods, enhancing port efficiency, engaging with regional and international vessel quieting initiatives, and leveraging co-benefits of management actions for reducing ocean noise.


Assuntos
Pandemias , Navios , Humanos , Monitoramento Ambiental , Ruído , Acústica , Ecossistema
2.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38058125

RESUMO

In vivo genome editing with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 generates powerful tools to study gene regulation and function. We revised the homology-assisted CRISPR knock-in method to convert Drosophila GAL4 lines to LexA lines using a new universal knock-in donor strain. A balancer chromosome-linked donor strain with both body color (yellow) and eye red fluorescent protein (RFP) expression markers simplified the identification of LexA knock-in using light or fluorescence microscopy. A second balancer chromosome-linked donor strain readily converted the second chromosome-linked GAL4 lines regardless of target location in the cis-chromosome but showed limited success for the third chromosome-linked GAL4 lines. We observed a consistent and robust expression of the yellow transgene in progeny harboring a LexA knock-in at diverse genomic locations. Unexpectedly, the expression of the 3xP3-RFP transgene in the "dual transgene" cassette was significantly increased compared with that of the original single 3xP3-RFP transgene cassette in all tested genomic locations. Using this improved screening approach, we generated 16 novel LexA lines; tissue expression by the derived LexA and originating GAL4 lines was similar or indistinguishable. In collaboration with 2 secondary school classes, we also established a systematic workflow to generate a collection of LexA lines from frequently used GAL4 lines.


Assuntos
Drosophila , Edição de Genes , Animais , Edição de Genes/métodos , Drosophila/genética , Transgenes , Genoma , Sistemas CRISPR-Cas
4.
Cancers (Basel) ; 15(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38136258

RESUMO

Glioblastoma (GB) is notoriously resistant to therapy. GB genesis and progression are driven by glioblastoma stem-like cells (GSCs). One goal for improving treatment efficacy and patient outcomes is targeting GSCs. Currently, there are no universal markers for GSCs. Glycoprotein A repetitions predominant (GARP), an anti-inflammatory protein expressed by activated regulatory T cells, was identified as a possible marker for GSCs. This study evaluated GARP for the detection of human GSCs utilizing a multidimensional experimental design that replicated several features of GB: (1) intratumoral heterogeneity, (2) cellular hierarchy (GSCs with varied degrees of self-renewal and differentiation), and (3) longitudinal GSC evolution during GB recurrence (GSCs from patient-matched newly diagnosed and recurrent GB). Our results indicate that GARP is expressed by GSCs across various cellular states and disease stages. GSCs with an increased GARP expression had reduced self-renewal but no alterations in proliferative capacity or differentiation commitment. Rather, GARP correlated inversely with the expression of GFAP and PDGFR-α, markers of astrocyte or oligodendrocyte differentiation. GARP had an abnormal nuclear localization (GARPNU+) in GSCs and was negatively associated with patient survival. The uniformity of GARP/GARPNU+ expression across different types of GSCs suggests a potential use of GARP as a marker to identify GSCs.

5.
Front Mol Biosci ; 10: 1237129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745690

RESUMO

Introduction: Co-normalization of RNA profiles obtained using different experimental platforms and protocols opens avenue for comprehensive comparison of relevant features like differentially expressed genes associated with disease. Currently, most of bioinformatic tools enable normalization in a flexible format that depends on the individual datasets under analysis. Thus, the output data of such normalizations will be poorly compatible with each other. Recently we proposed a new approach to gene expression data normalization termed Shambhala which returns harmonized data in a uniform shape, where every expression profile is transformed into a pre-defined universal format. We previously showed that following shambhalization of human RNA profiles, overall tissue-specific clustering features are strongly retained while platform-specific clustering is dramatically reduced. Methods: Here, we tested Shambhala performance in retention of fold-change gene expression features and other functional characteristics of gene clusters such as pathway activation levels and predicted cancer drug activity scores. Results: Using 6,793 cancer and 11,135 normal tissue gene expression profiles from the literature and experimental datasets, we applied twelve performance criteria for different versions of Shambhala and other methods of transcriptomic harmonization with flexible output data format. Such criteria dealt with the biological type classifiers, hierarchical clustering, correlation/regression properties, stability of drug efficiency scores, and data quality for using machine learning classifiers. Discussion: Shambhala-2 harmonizer demonstrated the best results with the close to 1 correlation and linear regression coefficients for the comparison of training vs validation datasets and more than two times lesser instability for calculation of drug efficiency scores compared to other methods.

6.
BMC Cancer ; 23(1): 762, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587449

RESUMO

BACKGROUND: Glioblastoma patients commonly develop resistance to temozolomide chemotherapy. Hypoxia, which supports chemotherapy resistance, favors the expansion of glioblastoma stem cells (GSC), contributing to tumor relapse. Because of a deregulated sphingolipid metabolism, glioblastoma tissues contain high levels of the pro-survival sphingosine-1-phosphate and low levels of the pro-apoptotic ceramide. The latter can be metabolized to sphingosine-1-phosphate by sphingosine kinase (SK) 1 that is overexpressed in glioblastoma. The small molecule SKI-II inhibits SK and dihydroceramide desaturase 1, which converts dihydroceramide to ceramide. We previously reported that SKI-II combined with temozolomide induces caspase-dependent cell death, preceded by dihydrosphingolipids accumulation and autophagy in normoxia. In the present study, we investigated the effects of a low-dose combination of temozolomide and SKI-II under normoxia and hypoxia in glioblastoma cells and patient-derived GCSs. METHODS: Drug synergism was analyzed with the Chou-Talalay Combination Index method. Dose-effect curves of each drug were determined with the Sulforhodamine B colorimetric assay. Cell death mechanisms and autophagy were analyzed by immunofluorescence, flow cytometry and western blot; sphingolipid metabolism alterations by mass spectrometry and gene expression analysis. GSCs self-renewal capacity was determined using extreme limiting dilution assays and invasion of glioblastoma cells using a 3D spheroid model. RESULTS: Temozolomide resistance of glioblastoma cells was increased under hypoxia. However, combination of temozolomide (48 µM) with SKI-II (2.66 µM) synergistically inhibited glioblastoma cell growth and potentiated glioblastoma cell death relative to single treatments under hypoxia. This low-dose combination did not induce dihydrosphingolipids accumulation, but a decrease in ceramide and its metabolites. It induced oxidative and endoplasmic reticulum stress and triggered caspase-independent cell death. It impaired the self-renewal capacity of temozolomide-resistant GSCs, especially under hypoxia. Furthermore, it decreased invasion of glioblastoma cell spheroids. CONCLUSIONS: This in vitro study provides novel insights on the links between sphingolipid metabolism and invasion, a hallmark of cancer, and cancer stem cells, key drivers of cancer. It demonstrates the therapeutic potential of approaches that combine modulation of sphingolipid metabolism with first-line agent temozolomide in overcoming tumor growth and relapse by reducing hypoxia-induced resistance to chemotherapy and by targeting both differentiated and stem glioblastoma cells.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Temozolomida/farmacologia , Recidiva Local de Neoplasia , Morte Celular , Processos Neoplásicos , Esfingolipídeos
7.
Mol Microbiol ; 120(3): 384-396, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37485949

RESUMO

The Bacillus subtilis spore is composed of a core, containing chromosomal DNA, surrounded by a cortex layer made of peptidoglycan, and a coat composed of concentric proteinaceous layers. A polysaccharide layer is added to the spore surface, and likely anchored to the crust, the coat outermost layer. However, the identity of the coat protein(s) to which the spore polysaccharides (SPS) are attached is uncertain. First, we showed that the crust proteins CotVWXYZ and CgeA were all contained in the peeled SPS layer obtained from a strain missing CotE, the outer coat morphogenetic protein, suggesting that the SPS is indeed bound to at least one of the spore surface proteins. Second, CgeA is known to be located at the most downstream position in the crust assembly pathway. An analysis of truncated variants of CgeA suggested that its N-terminal half is required for localization to the spore surface, while its C-terminal half is necessary for SPS addition. Third, an amino acid substitution strategy revealed that SPS was anchored at threonine 112 (T112), which constitutes a probable O-glycosylation site on CgeA. Our results indicated that CgeA is a glycoprotein required to initiate SPS assembly and serves as an anchor protein linking the crust and SPS layers.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo
8.
G3 (Bethesda) ; 13(9)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37279923

RESUMO

Conditional gene regulation in Drosophila through binary expression systems like the LexA-LexAop system provides a superb tool for investigating gene and tissue function. To increase the availability of defined LexA enhancer trap insertions, we present molecular, genetic, and tissue expression studies of 301 novel Stan-X LexA enhancer traps derived from mobilization of the index SX4 line. This includes insertions into distinct loci on the X, II, and III chromosomes that were not previously associated with enhancer traps or targeted LexA constructs, an insertion into ptc, and seventeen insertions into natural transposons. A subset of enhancer traps was expressed in CNS neurons known to produce and secrete insulin, an essential regulator of growth, development, and metabolism. Fly lines described here were generated and characterized through studies by students and teachers in an international network of genetics classes at public, independent high schools, and universities serving a diversity of students, including those underrepresented in science. Thus, a unique partnership between secondary schools and university-based programs has produced and characterized novel resources in Drosophila, establishing instructional paradigms devoted to unscripted experimental science.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Elementos Facilitadores Genéticos
9.
Cells ; 12(9)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37174691

RESUMO

Lysosomotropic agent chloroquine was shown to sensitize non-stem glioblastoma cells to radiation in vitro with p53-dependent apoptosis implicated as one of the underlying mechanisms. The in vivo outcomes of chloroquine or its effects on glioblastoma stem cells have not been previously addressed. This study undertakes a combinatorial approach encompassing in vitro, in vivo and in silico investigations to address the relationship between chloroquine-mediated radiosensitization and p53 status in glioblastoma stem cells. Our findings reveal that chloroquine elicits antagonistic impacts on signaling pathways involved in the regulation of cell fate via both transcription-dependent and transcription-independent mechanisms. Evidence is provided that transcriptional impacts of chloroquine are primarily determined by p53 with chloroquine-mediated activation of pro-survival mevalonate and p21-DREAM pathways being the dominant response in the background of wild type p53. Non-transcriptional effects of chloroquine are conserved and converge on key cell fate regulators ATM, HIPK2 and AKT in glioblastoma stem cells irrespective of their p53 status. Our findings indicate that pro-survival responses elicited by chloroquine predominate in the context of wild type p53 and are diminished in cells with transcriptionally impaired p53. We conclude that p53 is an important determinant of the balance between pro-survival and pro-death impacts of chloroquine and propose that p53 functional status should be taken into consideration when evaluating the efficacy of glioblastoma radiosensitization by chloroquine.


Assuntos
Glioblastoma , Radiossensibilizantes , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Cloroquina/farmacologia , Radiossensibilizantes/farmacologia , Células-Tronco/metabolismo , Medição de Risco , Proteínas de Transporte , Proteínas Serina-Treonina Quinases/metabolismo
10.
Glob Pediatr Health ; 10: 2333794X231159518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911753

RESUMO

The interplay between Adverse Childhood Experiences (ACEs) and resilience on health in children is not well understood. Parents completed 3 questionnaires: ACEs, Child and Youth Resilience Measure (CYRM), and the Pediatric Symptom Checklist-17(PSC-17). BMI and blood pressure were measured. 19.8% of children had 4 or more ACEs, resilience ranged from 25 to 51, 14.3% had a positive PSC-17 score, 25.6% were obese, 3.1% had systolic hypertension, and 1.2% had diastolic hypertension. Higher ACEs (ACE OR: 1.398, 95% CI = 1.044-1.893, P = .026) and lower resilience (Resilience OR: 0.740, 95% CI 0.668-0.812; P = 1.13 × 10-9) were predictive of increased reports of behavioral health symptoms, but not obesity or hypertension. The personal resilience subscale was a predictor of positive PSC-17 score (OR 0.646, 95% CI = 0.546-0.749, P = 3.18 × 10-8); relationship subscale was not. Cultivating resilience, especially personal aspects, may provide an effective intervention for behavioral health symptoms in children.

11.
J Acoust Soc Am ; 153(3): 1710, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37002102

RESUMO

Marine soundscapes provide the opportunity to non-invasively learn about, monitor, and conserve ecosystems. Some fishes produce sound in chorus, often in association with mating, and there is much to learn about fish choruses and the species producing them. Manually analyzing years of acoustic data is increasingly unfeasible, and is especially challenging with fish chorus, as multiple fish choruses can co-occur in time and frequency and can overlap with vessel noise and other transient sounds. This study proposes an unsupervised automated method, called SoundScape Learning (SSL), to separate fish chorus from soundscape using an integrated technique that makes use of randomized robust principal component analysis (RRPCA), unsupervised clustering, and a neural network. SSL was applied to 14 recording locations off southern and central California and was able to detect a single fish chorus of interest in 5.3 yrs of acoustically diverse soundscapes. Through application of SSL, the chorus of interest was found to be nocturnal, increased in intensity at sunset and sunrise, and was seasonally present from late Spring to late Fall. Further application of SSL will improve understanding of fish behavior, essential habitat, species distribution, and potential human and climate change impacts, and thus allow for protection of vulnerable fish species.


Assuntos
Ecossistema , Som , Animais , Acústica , Peixes , Ruído
12.
DNA Repair (Amst) ; 123: 103448, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657260

RESUMO

DNA repair mechanisms keep genome integrity and limit tumor-associated alterations and heterogeneity, but on the other hand they promote tumor survival after radiation and genotoxic chemotherapies. We screened pathway activation levels of 38 DNA repair pathways in nine human cancer types (gliomas, breast, colorectal, lung, thyroid, cervical, kidney, gastric, and pancreatic cancers). We took RNAseq profiles of the experimental 51 normal and 408 tumor samples, and from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases - of 500/407 normal and 5752/646 tumor samples, and also 573 normal and 984 tumor proteomic profiles from Proteomic Data Commons portal. For all the samplings we observed a congruent trend that all cancer types showed inhibition of G2/M arrest checkpoint pathway compared to the normal samples, and relatively low activities of p53-mediated pathways. In contrast, other DNA repair pathways were upregulated in most of the cancer types. The G2/M checkpoint pathway was statistically significantly downregulated compared to the other DNA repair pathways, and this inhibition was strongly impacted by antagonistic regulation of (i) promitotic genes CCNB and CDK1, and (ii) GADD45 genes promoting G2/M arrest. At the DNA level, we found that ATM, TP53, and CDKN1A genes accumulated loss of function mutations, and cyclin B complex genes - transforming mutations. These findings suggest importance of activation for most of DNA repair pathways in cancer progression, with remarkable exceptions of G2/M checkpoint and p53-related pathways which are downregulated and neutrally activated, respectively.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Reparo do DNA , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Neoplasias/genética , Proteômica , Proteína Supressora de Tumor p53/metabolismo
13.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806337

RESUMO

In gliomas, expression of certain marker genes is strongly associated with survival and tumor type and often exceeds histological assessments. Using a human interactome model, we algorithmically reconstructed 7494 new-type molecular pathways that are centered each on an individual protein. Each single-gene expression and gene-centric pathway activation was tested as a survival and tumor grade biomarker in gliomas and their diagnostic subgroups (IDH mutant or wild type, IDH mutant with 1p/19q co-deletion, MGMT promoter methylated or unmethylated), including the three major molecular subtypes of glioblastoma (proneural, mesenchymal, classical). We used three datasets from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas, which in total include 527 glioblastoma and 1097 low grade glioma profiles. We identified 2724 such gene and 2418 pathway survival biomarkers out of total 17,717 genes and 7494 pathways analyzed. We then assessed tumor grade and molecular subtype biomarkers and with the threshold of AUC > 0.7 identified 1322/982 gene biomarkers and 472/537 pathway biomarkers. This suggests roughly two times greater efficacy of the reconstructed pathway approach compared to gene biomarkers. Thus, we conclude that activation levels of algorithmically reconstructed gene-centric pathways are a potent class of new-generation diagnostic and prognostic biomarkers for gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioma/diagnóstico , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Mutação
14.
Cancers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35681710

RESUMO

Glioblastoma multiforme is the most common and devastating form of brain tumor for which only palliative radio- and chemotherapy exists. Although some clinical studies on vaccination approaches have shown promising efficacy due to their potential to generate long-term immune surveillance against cancer cells, the evasion mechanisms preventing therapy response are largely uncharacterized. Here, we studied the response of glioblastoma-propagating cells (GPCs) to clinically relevant doses of γ radiation. GPCs were treated with 2.5 Gy of γ radiation in seven consecutive cellular passages to select for GPCs with increased colony-forming properties and intrinsic or radiation-induced resistance (rsGPCs). Quantitative proteomic analysis of the cellular signaling platforms of the detergent-resistant membranes (lipid rafts) in GPCs vs. rsGPCs revealed a downregulation of the MHC class I antigen-processing and -presentation machinery. Importantly, the radio-selected GPCs showed reduced susceptibility towards cytotoxic CD8+ T-cell-mediated killing. While previous studies suggested that high-dose irradiation results in enhanced antigen presentation, we demonstrated that clinically relevant sub-lethal fractionated irradiation results in reduced expression of components of the MHC class I antigen-processing and -presentation pathway leading to immune escape.

15.
Cell Death Dis ; 13(4): 293, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365623

RESUMO

Overexpression of histone deacetylases (HDACs) in cancer commonly causes resistance to genotoxic-based therapies. Here, we report on the novel mechanism whereby overexpressed class I HDACs increase the resistance of glioblastoma cells to the SN1 methylating agent temozolomide (TMZ). The chemotherapeutic TMZ triggers the activation of the DNA damage response (DDR) in resistant glioma cells, leading to DNA lesion bypass and cellular survival. Mass spectrometry analysis revealed that the catalytic activity of class I HDACs stimulates the expression of the E3 ubiquitin ligase RAD18. Furthermore, the data showed that RAD18 is part of the O6-methylguanine-induced DDR as TMZ induces the formation of RAD18 foci at sites of DNA damage. Downregulation of RAD18 by HDAC inhibition prevented glioma cells from activating the DDR upon TMZ exposure. Lastly, RAD18 or O6-methylguanine-DNA methyltransferase (MGMT) overexpression abolished the sensitization effect of HDAC inhibition on TMZ-exposed glioma cells. Our study describes a mechanism whereby class I HDAC overexpression in glioma cells causes resistance to TMZ treatment. HDACs accomplish this by promoting the bypass of O6-methylguanine DNA lesions via enhancing RAD18 expression. It also provides a treatment option with HDAC inhibition to undermine this mechanism.


Assuntos
Neoplasias Encefálicas , Glioma , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Histona Desacetilases/farmacologia , Humanos , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/farmacologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ubiquitina-Proteína Ligases/farmacologia
16.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100369

RESUMO

Conditional expression of short hairpin RNAs with binary genetic systems is an indispensable tool for studying gene function. Addressing mechanisms underlying cell-cell communication in vivo benefits from simultaneous use of 2 independent gene expression systems. To complement the abundance of existing Gal4/UAS-based resources in Drosophila, we and others have developed LexA/LexAop-based genetic tools. Here, we describe experimental and pedagogical advances that promote the efficient conversion of Drosophila Gal4 lines to LexA lines, and the generation of LexAop-short hairpin RNA lines to suppress gene function. We developed a CRISPR/Cas9-based knock-in system to replace Gal4 coding sequences with LexA, and a LexAop-based short hairpin RNA expression vector to achieve short hairpin RNA-mediated gene silencing. We demonstrate the use of these approaches to achieve targeted genetic loss-of-function in multiple tissues. We also detail our development of secondary school curricula that enable students to create transgenic flies, thereby magnifying the production of well-characterized LexA/LexAop lines for the scientific community. The genetic tools and teaching methods presented here provide LexA/LexAop resources that complement existing resources to study intercellular communication coordinating metazoan physiology and development.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Animais Geneticamente Modificados , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos
17.
Cancers (Basel) ; 13(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34439271

RESUMO

Gliomas are the most common malignant brain tumors with high mortality rates. Recently we showed that the FREM2 gene has a role in glioblastoma progression. Here we reconstructed the FREM2 molecular pathway using the human interactome model. We assessed the biomarker capacity of FREM2 expression and its pathway as the overall survival (OS) and progression-free survival (PFS) biomarkers. To this end, we used three literature and one experimental RNA sequencing datasets collectively covering 566 glioblastomas (GBM) and 1097 low-grade gliomas (LGG). The activation level of deduced FREM2 pathway showed strong biomarker characteristics and significantly outperformed the FREM2 expression level itself. For all relevant datasets, it could robustly discriminate GBM and LGG (p < 1.63 × 10-13, AUC > 0.74). High FREM2 pathway activation level was associated with poor OS in LGG (p < 0.001), and low PFS in LGG (p < 0.001) and GBM (p < 0.05). FREM2 pathway activation level was poor prognosis biomarker for OS (p < 0.05) and PFS (p < 0.05) in LGG with IDH mutation, for PFS in LGG with wild type IDH (p < 0.001) and mutant IDH with 1p/19q codeletion(p < 0.05), in GBM with unmethylated MGMT (p < 0.05), and in GBM with wild type IDH (p < 0.05). Thus, we conclude that the activation level of the FREM2 pathway is a potent new-generation diagnostic and prognostic biomarker for multiple molecular subtypes of GBM and LGG.

18.
Artigo em Inglês | MEDLINE | ID: mdl-34341009

RESUMO

Glioblastoma multiforme (GBM) is the most malignant brain tumor with patient mortality rate close to 100%, 5-yr survival rate of ∼5%, and a median survival of 14 mo. GBMs have notorious histomorphologic and molecular heterogeneities thus giving hope for development of future personalized therapies. We describe here a case of a 48-yr-old male patient with three-nodular GBM. To address the question of intratumoral molecular heterogeneity, a comparative analysis of gene expression was performed by using multiple samples collected from different tumor sites with the aid of intraoperative magnetic resonance imaging (MRI). Sixteen GBM biosamples from parietal, temporal, and temporo-polar localizations were collected from primary, recurrent, and second recurrent tumors and were obtained and investigated by RNA sequencing. Our investigations revealed that biosamples derived from different tumor sites differ in their gene expression profiles with classical or mesenchymal signatures associated with clinically distinct molecular subtypes of GBM found within the same tumor. The results also showed significant differences in the expression of genes specific for targeted therapeutics. Our investigations have enabled the identification of four novel fusion transcripts-KIF5C-NTRK3, AC016907.2-ALK, CNTNAP3-NTRK2, and ZNF135-FGFR2-each present in only one sample. We found no differences between untreated and recurrent stages in the expression levels of genes involved in fusion transcripts, suggesting the lack of association between fusion transcript and treatment response. In contrast, longitudinal changes in the expression of VEGF and MGMT genes were concordant with the tumor response to bevacizumab and temozolomide. Our study underscores the importance of integrating a multisampling approach and RNA sequencing and demonstrates the predictive merit of an integrated approach for differentiating genomic aberrations associated with untreated or post-treatment recurrent GBMs.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Proteínas de Fusão Oncogênica/genética , Oncogenes , Transcriptoma , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
19.
Glob Pediatr Health ; 8: 2333794X20982433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614836

RESUMO

The relationship between Adverse childhood experiences (ACEs), resilience, and health outcomes has not been as thoroughly studied in adolescents. Adolescents completed the ACEs Questionnaire and a validated resilience measure (Child Youth Resilience Measure, or CYRM). Poor health outcome was having 1 or more: obesity, hypertension, and/or depression. 34.5% of teens had a poor health outcome, 38.6% had ACE scores of 4 or more, and resilience ranged from 45 to 84 (mean = 74.6). By univariate and bivariate analysis, ACEs (OR = 1.11, 95% CI = 1.03-1.19, P = .0039; OR = 1.08, 95% CI = 1.0-1.16, P = .045) and resilience (OR = 0.95, 95% CI = 0.92-0.98, P = .0016; OR = 0.96, 95% CI = 0.93-0.99, P = .016) were significantly associated with poor health outcome. Resilience relationship subscale was significantly associated with reduced health risk (OR = 0.85, 95%CI = 0.75-0.95, P = .005). ACEs are associated with poor health outcomes in adolescents, resilience is inversely related, and the caregiver relationship may be the driving force.

20.
Biomedicines ; 10(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35052687

RESUMO

Aldehyde dehydrogenase 1 isoforms A1 and A3 have been implicated as functional biomarkers associated with distinct molecular subtypes of glioblastoma and glioblastoma stem cells. However, the exact roles of these isoforms in different types of glioma cells remain unclear. The purpose of this study was to dissect the association of A1 or A3 isoforms with stem and non-stem glioblastoma cells. This study has undertaken a systematic characterization of A1 and A3 proteins in glioblastoma tissues and a panel of glioblastoma stem cells using immunocytochemical and immunofluorescence staining, Western blot and the subcellular fractionation methodology. Our main findings are (i) human GSCs express uniformly ALDH1A3 but not the ALDH1A1 isoform whereas non-stem glioma cells comparably express both isoforms; (ii) there is an abundance of ALDH1A3 peptides that prevail over the full-length form in glioblastoma stem cells but not in non-stem glioma cells; (iii) full-length ALDH1A3 and ALDH1A3 peptides are spatially segregated within the cell; and (vi) the abundance of full-length ALDH1A3 and ALDH1A3 peptides is sensitive to MG132-mediated proteasomal inhibition. Our study further supports the association of ALDH1A3 with glioblastoma stem cells and provide evidence for the regulation of ALDH1A3 activities at the level of protein turnover.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...